Empirical signatures of compositional stability in the gut microbiome Claire Duvallet¹, Sean Gibbons¹, Eric Alm^{1,2}

¹Department of Biological Engineering, Massachusetts Institute of Technology ²Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology

Method

One way to investigate stability of communities is to ask: "Does the abundance of one OTU affect the composition of the remaining community in reproducible and predictable way?"

Data - Analyses are performed on 4 longitudinal datasets and one cross-sectional dataset.

Regression - Removing Y from OTU table and renormalizing removes compositional effects in remaining community. Regressing Y on re-normalized OTU table captures predictable relationships between Y's abundance and the composition of the remaining community. Original OTU table

Analysis - Correlation between estimated and real values of Y indicates the strength of Y's impact on the community. Further examining the correlation of each OTU in X with Y provides insight into specific interactions.

Longitudinal data from individual donors yields better predictions than cross-sectional samples.

p Bacteroidetes; c Bacteroidia; o Bacteroidales; f Bacteroidaceae

hat	0	0.0	• • • •	,		••		0.0	0 0 0
> ¹ _{0.4}	•••	0.4		0.4		0.4		0.4	0 0
0.2		0.2	•	0.2	° • •	0.2		0.2	•
0.0 * 0.0	0.2 0.4 0.6 y_actual	0.0 0.8 1.0 0.0	0.2 0.4 0.6 0. y_actual	0.0 8 1.0 0.0	0.2 0.4 0.6 y_actual	0.0 0.8 1.0 0.0	0.2 0.4 0.6 0.8 y_actual	0.0 1.0 0.0	0.2 0.

Some interactions are unique to each donor's community state Some interactions are present in only a subset of

individuals.

y actual

y_actua

y actual

Specific interactions between bacteria vary across donors

The correlation between an OTU and its other community members is not conserved across individuals.

 $r_s = corr(X_i, Y)$ Y = p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae

Further analyses could probe features of stable communities

Validation	Gold standard stat to serve as a "pos
Investigation	Why does donorB How does variance affect its predictab
Exploration	What is the most i thing to do?

contact: duvallet@mit.edu

