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Abstract
Multilingual automatic speech recognition (ASR) systems have
led to a major step forward towards building robust ASR sys-
tems for languages with low resource availability by increas-
ing coverage for individual languages. State of the art multi-
lingual systems are developed with sequential networks such
as recurrent neural networks (RNNs) to capture long term tem-
poral dependencies. Training and inference in such sequential
models are computationally expensive, which poses a signifi-
cant challenge in terms of scalability and real-time applications.
In this paper, an alternate architecture based on short term con-
textual temporal features learned on convolutional neural net-
works (CNNs) with a non-sequential discriminative network is
proposed. Three low resource Indic languages, Gujarati, Tamil,
and Telugu are used to ascertain that our proposed architecture
trains 5.5× faster and reduces the inference time by a factor
of 26 while maintaining comparable word error rates (WERs)
against our baseline RNN.
Index Terms: Multilingual ASR, Low Resource, CNN-DNN

1. Introduction
Multilingual automatic speech recognition (ASR) system is a
single entity capable of transcribing speech utterances for mul-
tiple languages with a shared phone space. Multilingual ASR
systems have seen tremendous growth and have proven to be a
viable solution for building robust speech recognition systems
often outperforming the monolingual counterparts, especially
for languages with low resource [1–5].

Conventionally, an ASR system is a modular system com-
prising of multiple sequential components. Each of these com-
ponents is optimized individually. The first component extracts
state of the art handcrafted features such as Mel frequency cep-
stral coefficients (MFCCs), perceptual linear prediction (PLP)
from raw speech signals. Additionally, forced alignment tech-
niques are used to generate output phone labels for these ex-
tracted features. The second component, an acoustic model
trained on the extracted feature - alignment label pairs, esti-
mates the phone probabilities for given acoustic representations.
The third component, word reconstruction, takes in the esti-
mated phone probabilities as input and predicts a sequence of
words using a language model.

Recently, there have been substantial developments on end
to end (E2E) acoustic modeling which combines multiple com-
ponents to optimize the system as a single unit. Techniques
based on attention networks [6, 7], connectionist temporal clas-
sification (CTC) [8–10] transcribe acoustic frames into phones
without the need of any predefined alignments. Techniques
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based on convolutional neural networks (CNNs) transcribe raw
speech utterances directly into phones, eliminating the step of
hand-crafted feature extraction [11–16].

In recent years, the use of speech recognition systems has
soared across the globe. However, such systems are still largely
limited to only a handful of languages [17]. It thus becomes
imperative to build robust and scalable techniques that can be
used to quickly bootstrap ASR systems for multiple languages.

The discriminative networks in the acoustic models are
largely built on sequential networks such as recurrent neural
networks (RNNs) [18–20]. Sequential networks have the in-
herent property of capturing long term contextual dependencies
in a sequence. Fields like natural language processing, machine
translation are largely dependent on such sequential architec-
tures. Such networks are however computationally expensive
due to limited scope in parallelization. Deep neural network
(DNN) on the other hand is a non-sequential architecture, pro-
viding computational efficiency but at a cost of high WERs [12].

Phonemes have very short contextual dependencies. For
instance, the pronunciation of phoneme k is dependent on its
neighboring phonemes in cat (k-ae-t), car (k-aa-r), hack (hh-
ae-k), sky (s-k-ay). However, in the sentence ”this is a cat”
(dh-ih-s ih-z ah k-ae-t), the pronunciation of phoneme k is de-
pendent only on neighboring phones, ah and ae but is indepen-
dent of all the other phonemes in the sentence [21]. CNNs have
been researched in the field of monolingual ASR as a feature
extraction layer to improve the WERs on DNNs while main-
taining the computational efficiency by learning the short term
contextual dependencies on the acoustic frames [12].

In this paper, we build upon our prior work based on a joint
acoustic model for low resource languages [1]. Inspiration from
the work done on CNNs in [11] and [12] is taken to learn short
term contextual temporal features on acoustic frames using con-
volutional layers. We experiment with both end-to-end and con-
ventional ASR approaches based on CNN-DNN architectures
to draw a comparative analysis between the two of them. Three
low resource Indic languages, Gujarati, Telugu, and Tamil are
used with a combined training dataset of 75 hours. WER is used
as the evaluation metric for all the experiments.

The rest of the paper is organized as follows. Section 2 de-
scribes multilingual acoustic models. Section 3 describes the
various system components of our experiments. Section 4 de-
scribes the experimental setup. Section 5 presents results with a
comprehensive and comparative analysis. Section 6 concludes
our paper by stating the inferences drawn.

2. Multilingual Acoustic Models
Over the years, multilingual acoustic models have been exten-
sively researched for building robust speech recognition sys-



tems. One way to build such a system is to leverage the shared
phone space between languages by combining individual phone
sets to build a common phone set. The shared phonetic space
increases the training data for individual phonemes enabling the
model to learn better acoustic representations. This is especially
beneficial for low resource languages.

Several techniques have been used to build such multilin-
gual systems. Strategies like shared hidden layers [22], bot-
tleneck features [23], multitask learning [24] train monolingual
models on multilingual data. One approach to building such
monolingual models is to share the hidden representations be-
tween the languages while keeping the output layer language-
specific. Such systems are operated by either placing a Lan-
guage Identification (LID) front-end to switch to the corre-
sponding monolingual model or by selecting the best hypoth-
esis obtained by running all the monolingual models. The per-
formance of the former approach is largely dependent on the
robustness and accuracy of the front-end LID system while the
latter approach requires multiple monolingual models to be op-
erated parallelly.

Most individuals in multilingual countries like India engage
in code-switching during a spoken conversation [25]. Code-
switching is a phenomenon of mixing multiple languages in a
single utterance. Due to the language dependency in the above-
mentioned models, operating such models in a code-switched
environment becomes very tricky. To employ large scale speech
recognition systems in such multilingual countries, it is neces-
sary to build language-agnostic acoustic models.

This study uses the common phone set to build a compu-
tationally efficient language independent joint acoustic model
capable of handling multiple languages in a single system.
A parser is used to convert utf8 text format to a language-
independent IT3 format [26]. The IT3 format text is then used
to generate pronunciation sequences for all the words.

3. System Components
3.1. Convolutional Neural Networks

The domain of images and videos often witness very high di-
mensional data commonly in the range of 106. Training deep
neural networks on such high dimensional data generates noise
while tremendous machine power is needed to process such
large fully connected layers. Convolutional neural networks re-
duce dimensionality whilst retaining important spatial features
such as contour boundaries, edges, simple curves, etc. The ex-
tracted low dimensional features are then fed to a discriminative
model to perform classification tasks.

A convolutional neural network is made up of stacked con-
volutional layers where each convolutional layer is a combina-
tion of convolution, activation, and pooling.

Mathematically, a non-strided convolution operation is ex-
pressed as:

C[m,n] =
∑
j

∑
l

k[j, l]i[m+ j, n+ l] (1)

where non-strided denotes that the sliding step for the filter is
1. C is the output of the convolution operation, m and n are the
convolution output indices, k is a filter, also known as kernel
and i is multi-dimensional input. j and l are the dimensions of
the filter.

The output dimension of the non-strided convolution oper-
ation is given as

d(C) = [p− j + 1, q − l + 1] (2)

where p and q are the input dimensions.
Speech signals, like images, are high dimensional data

where just a 1-second long speech sample with a frame rate
of 16000Hz consists of 16000 features. Each feature repre-
sents a sample in time. Conventionally, generic hand-crafted
features like MFCC are extracted to reduce the dimensionality
of the speech signals and represent the time-variation as a fixed-
dimension vector.

CNNs as a replacement for hand-crafted features have been
extensively researched [11–15] to extract contextual temporal
features.

3.2. Sampling Raw Signals

Raw input speech signals have variable lengths, whereas CNN
expects inputs to be of fixed dimension. Hence, the raw signals
are first sampled into feature vectors of fixed dimensions. The
speech signals in our dataset have a frame rate of 16kHz and are
sampled every 10 ms over a window of 25ms.

3.3. Context Window

Sequential models like RNNs capture coarticulation across con-
secutive phones. Such models are inherently complex and com-
putationally intensive. Moreover, such models are equipped to
capture long term contextual dependencies wherein models cap-
turing minimum duration short term contextual dependencies
lead to similar or improved results [21].

CNNs can be trained to capture such short-term contextual
dependencies by providing context to the current frame. Con-
text windows represent the frames on the left and the right of
the current frame. Instead of passing just the current frame
along with the phone label to the model, a window of length
(m+ n+ 1)× f is passed, where m represents the number of
context windows on the left, n is the number of context windows
on the right and f is the frame length.

4. Experimental Setup
4.1. Data

The Data is a subset of Interspeech 2018’s Low Resource
Speech Recognition Challenge for Indian languages by Mi-
crosoft and SpeechOcean.com dataset 1 [27].

Table 1: #Utterances included in training, dev and test set

Languages Train Set Dev Set Test Set

Gujarati 18307 4500 3075
Telugu 12667 3200 3040
Tamil 15712 3900 3081

India is a country with more than 1500 recognized lan-
guages. Out of these, 30 languages have more than one million
speakers and 22 languages have been accorded with the official
status [28]. Such diversity in spoken languages poses a signifi-
cant challenge in obtaining sizable training data to train robust
monolingual systems for each of these languages. This dataset

1The dataset is available at https://msropendata.com/
datasets/7230b4b1-912d-400e-be58-f84e0512985e.

https://msropendata.com/datasets/7230b4b1-912d-400e-be58-f84e0512985e
https://msropendata.com/datasets/7230b4b1-912d-400e-be58-f84e0512985e
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Figure 1: Design of proposed CNN based architecture

was released as an effort to explore robust multilingual systems
as a means to overcome the challenge of data limitations.

The data includes three Indic languages namely Gujarati,
Tamil, and Telugu spoken by multiple speakers. The combined
training data of all three languages is 75 hours. The test and
the validation data are 5 hours per language. Text transcrip-
tion along with the lexicon for the entire data is included in the
dataset.

State of the art systems were built on the full dataset, which
has 120 hours of trainable data. The baseline DNN based sys-
tem in the challenge has a WER of 27.79, 34.97, and 25.47 on
Gujarati, Telugu, and Tamil respectively [27].

4.2. Toolkits

The Kaldi Speech recognition toolkit [29] has been used.
SRILM toolkit is used for language modeling. MFCCs, modi-
fied KneserNey smoothed tri-gram models are built for forced
alignments using the Wall Street Journal Kaldi recipe. Lib-
riSpeech recipes are used to decode and score the system.
Pytorch-Kaldi toolkit [30] was used for the development of
acoustic models.

4.3. Baseline: Recurrent Neural Network

The baseline model is a recurrent network composed of stacked
bidirectional long short-term memory (LSTM) layers built on
MFCC features. The network has 3 hidden layers and 550 hid-
den units in each layer. tanh activation function is used with a
20% dropout in each layer. Layer normalization is used along
with a batch size of 8. The learning rate is kept at 0.0016 with a
halving factor of 0.5 with the improvement threshold of 0.001.
RMSprop optimizer function is used. The MFCC features are
generated using the techniques mentioned in section 4.2. Neg-
ative Loss Likelihood (NLL) is used as the loss function for the
baseline and all the subsequent experiments mentioned in the
paper. It is expressed as:

L(y) = −
∑
i

log(yi) (3)

where yi is the prediction for the ith frame.

4.4. Proposed Architecture

Our CNN based acoustic system consists of two components,
the front-end and the back end. The front-end is a generative
feature extraction network based on deep CNNs and the back
end is a discriminative network based on DNNs. The compo-
nents are connected by a flattening layer and are trained and
optimized as a single unit.

Figure 1 represents the high-level design for the proposed
end-to-end architecture. Each CNN layer performs convolu-
tions, max pooling, batch normalization with rectified linear
units (ReLU) activation. The DNNs consist of stacked fully
connected layers with each layer made up of 1024 ReLUs.

The end-to-end system is trained on a feature vector - label
pair where each feature vector is a concatenation of left context
window, current acoustic frame, and right context window. The
utterances are decoded with the decoder and a unified language
model mentioned in section 4.2. The flattening layer flattens the
multi-channel CNN output as a single-dimensional input to the
discriminative network.

5. Experimental Results
This section presents a comprehensive and comparative analysis
between different CNN based architectural configurations and
the baseline RNN.

Table 2 presents a comprehensive view of the experimental
results obtained on models with different configurations. Table
3 presents a comparative analysis of computational time and av-
erage WER degradation of different configurations against the
baseline model. The unit of the training time is kept variable
to enable better readability. The inference time is calculated as
T/N where T is the total inference time on the test set and N is
the number of examples. All the models are trained, and infer-
ences are drawn on single-core NVIDIA TITAN Xp GPUs in a
multi-core GPU setup.

Table 2: WER of different models in %

Models + Context Gujarati Telugu Tamil

lstm + mfcc 18.36 25.23 24.32
cnn + raw + {0, 0} 24.06 31.23 30.96
cnn + raw + {−1,+1} 23.92 30.66 29.58
cnn + raw + {−2,+1} 21.13 27.80 25.76
cnn + raw + {−1,+2} 22.65 30.32 28.96
cnn + raw + {−2,+2} 23.87 32.09 31.20
cnn + mfcc 25.05 31.13 30.78

Two different CNN based architectures are trained. The
first architecture is an end-to-end system trained on raw speech
signals to enable the CNNs to learn sophisticated short-term
contextual features directly on the raw data. The second archi-
tecture is based on the conventional ASR approach where the
CNNs are trained on handcrafted MFCC features.



Table 3: Performance comparison on the average % WER, average % WER degration, training and inference time.

Training Inference
Exp Models + Context Avg. WER Avg. WER deg. Time Speed Up Time Speed Up

1 lstm + mfcc 22.63 - ∼ 4.5 days - 780 ms -
2 cnn + raw + {0, 0} 28.75 −6.12 7.84 hours ∼ 13.5× 15ms ∼ 52×
3 cnn + raw + {−1,+1} 28.05 −5.42 11.56 hours ∼ 9× 29ms ∼ 26×
4 cnn + raw + {−2,+1} 24.89 −2.26 19.08 hours ∼ 5.6× 30ms ∼ 26×
5 cnn + raw + {−1,+2} 27.31 −4.68 21.63 hours ∼ 5× 32ms ∼ 24×
6 cnn + raw + {−2,+2} 29.05 −6.42 24.42 hours ∼ 4.4× 89ms ∼ 8.7×
7 cnn + mfcc 28.98 −6.35 3.55 hours ∼ 30× 12 ms ∼ 65×

5.1. Deep Convolutional Layers on Raw Speech Signals

The front-end is a CNN composed of 3 hidden layers. The 1st,
2nd and 3rd layer has 8, 8 and 2 channels respectively. The length
of the kernel in the first layer is 128. Kernel length is halved for
each consecutive layer. Max pooling of length 5 is applied on
the first layer and a length of 3 is applied on the other two layers.
Drop out of 15%, 30% and 20% is employed for the 1st, 2nd and
3rd layer respectively. A learning rate of 0.0008 is employed
with a halving factor of 0.5 and an improvement threshold of
0.001. ReLU activation function is employed at each layer.

The back end DNN consists of 5 hidden layers. Each of the
hidden layers is made up of 1024 units with a dropout of 10%.
ReLU activation is applied to each layer with softmax activation
on the output layer. A learning rate of 0.0004 is applied with a
halving factor of 0.5 and an improvement threshold of 0.001.
The end-to-end system is trained on mini-batches of 64 with
batch normalization and RMSprop optimizer.

The architecture is trained on raw speech signals sampled
to obtain 400-dimensional feature vectors using the technique
mentioned in section 3.2. Different experiments are performed
varying the size of the context window from 0 to 2 while keep-
ing the CNN and DNN layers constant to find the ideal configu-
ration. Adding 2 context windows on the left and right expands
the 400 dimensional feature vector to (2 + 2 + 1)× 4 = 2000
dimension.

Our best model achieves a WER of 21.13, 27.80, and 25.76
on Gujarati, Telugu, and Tamil respectively with 2 left and 1
right context window (Exp 4, Table 3). The results are compa-
rable to the baseline with an average degradation of only 2.26
WER. A computation boost of 5.6× in training time and 26×
in inference time is obtained with this configuration taking only
an average of 30ms to infer on an average of 5.85s long speech
utterance compared to 780ms on the baseline.

It is observed from Table 3 that decreasing the size of
the context window boosts up the training and inference com-
putations but at a cost of degradation in the WERs. Mod-
els trained on acoustic frames with no context (Exp 2) and
large context (Exp 6) observe a significant average degradation
of ∼ 6.2WER. This indicates no context doesn’t provide all
the relevant articulation and coarticulation information for the
phones while providing large contexts introduces more noise
than relevancy. It is also observed that adding more context on
the left (Exp 4) gives slightly better WER as compared to adding
more context on the right (Exp 5) for the same context window
size with comparable training and inference time speed up indi-
cating that the left context contains more relevant information
compared to the right context.

5.2. Deep Convolutional Layers on MFCC features

The front-end is a deep CNN composed of 3 hidden layers. The
layers consist of 80, 60, 60 output channels respectively. The
kernel length of 10, 3, 3 with max-pooling length of 3, 2, 1 is
applied. The back end is a deep neural network with 4 hidden
layers, each layer composed of 1024 units. A dropout of 15%
is applied in each layer of the end to end system with a learning
rate of 0.08 and a halving factor of 0.5 with the improvement
threshold of 0.001. ReLU activation is applied in every layer
barring the output layer which employs softmax activation. The
system is trained on a batch size of 128 with batch normaliza-
tion and stochastic gradient descent optimizer.

The highest boost in the training and inference time is
achieved from this configuration (Exp 7, Table 3) with an infer-
ence time of an average 12ms on an average 5.85s long speech
utterance. This is a 65× boost compared to 780ms inference
time on the baseline. However, this comes with a significant
degradation in the WER with an average degradation of 6.35.
The WER performance is on par with the CNN architecture on
raw speech signals with no context window with a speedup of
3ms on inference time.

6. Conclusion
Our previous work proposed a joint acoustic model based
on HMM-SGMM and RNN-CTC for training a multilingual
speech recognition system. In this paper, a non-sequential dis-
criminative approach based on the features extracted by CNNs
is investigated. Experimental results show that such systems
vastly reduce the training and inference time while producing
comparable WERs against our baseline sequential model based
on RNN. This shows great potential and promise for CNN based
architectures in real-time applications for achieving low latency
and can also be used to quickly bootstrap multiple low resource
multilingual ASR systems. It is observed that a context window
of size 2 on the left and 1 on the right produces the most opti-
mal WERs. The best inference time was obtained on the model
trained on MFCC features boosting the inference time by 65×.
CNN based architectures can be further researched to improve
and obtain better WERs compared to sequential models while
speeding up the training and inference time.
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