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ABSTRACT
Multilingual automatic speech recognition (ASR) systems have led
to a major step forward towards building robust ASR systems for
languages with low resource availability by increasing coverage for
individual languages. State of the art multilingual systems are devel-
oped with sequential networks such as recurrent neural networks
(RNNs) to capture long term temporal dependencies. Training and
inference in such sequential models are computationally expensive,
which poses a significant challenge in terms of scalability and real-
time applications. In this paper, an alternate architecture based on
short term contextual temporal features learned on convolutional
neural networks (CNNs) with a non-sequential discriminative net-
work is proposed. Three low resource Indic languages, Gujarati,
Tamil, and Telugu are used to ascertain that our proposed architec-
ture trains 5.5× faster and reduces the inference time by a factor of
26 while maintaining comparable word error rates (WERs) against
our baseline RNN.
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1 INTRODUCTION
In recent years, the use of speech recognition systems has soared
across the globe. However, such speech recognition systems are
still largely limited to only a handful of languages. It thus becomes
imperative to build robust and scalable techniques that can be used
to quickly bootstrap automatic speech recognition (ASR) systems
for multiple languages. Multilingual ASR system is a single entity
capable of transcribing speech utterances for multiple languages
with a shared phone space. Multilingual ASR systems have seen
tremendous growth and have proven to be a viable solution for
building robust speech recognition systems often outperforming
the monolingual counterparts, especially for languages with low
resource [2, 4, 8, 9, 11]. One way to build such a system is to leverage
the shared phone space between languages by combining individual
phone sets to build a common phone set. The shared phonetic space
increases the training data for individual phonemes enabling the
model to learn better acoustic representations. This is especially
beneficial for low resource languages.

Several techniques have been used to build such multilingual sys-
tems. Strategies like shared hidden layers [5], bottleneck features
[15], multitask learning [3] train monolingual models on multilin-
gual data. One approach to building such monolingual models is
to share the hidden representations between the languages while
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keeping the output layer language-specific. Such systems are oper-
ated by either placing a Language Identification (LID) front-end to
switch to the corresponding monolingual model or by selecting the
best hypothesis obtained by running all the monolingual models.
The performance of the former approach is largely dependent on
the robustness and accuracy of the front-end LID system while
the latter approach requires multiple monolingual models to be
operated parallelly.

Most individuals in multilingual countries like India engage in
code-switching during a spoken conversation [17]. Code-switching
is a phenomenon of mixing multiple languages in a single utter-
ance. Due to the language dependency in the above-mentioned
models, operating such models in a code-switched environment
becomes very tricky. To employ large scale speech recognition
systems in such multilingual countries, it is necessary to build
language-agnostic acoustic models. This study uses the common
phone set to build a computationally efficient language indepen-
dent joint acoustic model capable of handling multiple languages
in a single system. A parser is used to convert utf8 text format to a
language-independent IT3 format [1]. The IT3 format text is then
used to generate pronunciation sequences for all the words.

The discriminative networks in the acoustic models are largely
built on sequential networks such as recurrent neural networks
(RNNs) [7, 12, 18]. Sequential networks have the inherent prop-
erty of capturing long term contextual dependencies in a sequence.
Fields like natural language processing, machine translation are
largely dependent on such sequential architectures. Such networks
are however computationally expensive due to limited scope in
parallelization. Deep neural network (DNN) on the other hand is
a non-sequential architecture, providing computational efficiency
but at a cost of high WERs [6]. Phonemes have very short con-
textual dependencies. For instance, the pronunciation of phoneme
k is dependent on its neighboring phonemes in cat (k-ae-t), car
(k-aa-r), hack (hh-ae-k), sky (s-k-ay). However, in the sentence
"this is a cat" (dh-ih-s ih-z ah k-ae-t), the pronunciation of phoneme
k is dependent only on neighboring phones, ah and ae but is in-
dependent of all the other phonemes in the sentence [13]. CNNs
have been researched in the field of monolingual ASR as a feature
extraction layer to improve the WERs on DNNs while maintaining
the computational efficiency by learning the short term contextual
dependencies on the acoustic frames [6].

Recently, there have been substantial developments on end to end
(E2E) acoustic modeling which combines multiple components to
optimize the system as a single unit. Techniques based on attention
networks [6, 7], connectionist temporal classification (CTC) [8–10]
transcribe acoustic frames into phones without the need of any



Table 1: Performance comparison on the average % WER, average % WER degration, training and inference time.

Training Inference
Exp Models + Context Avg. WER Avg. WER deg. Time Speed Up Time Speed Up

1 lstm + mfcc 22.63 - ∼ 4.5 days - 780 ms -
2 cnn + raw + {0, 0} 28.75 −6.12 7.84 hours ∼ 13.5× 15ms ∼ 52×
3 cnn + raw + {−1, +1} 28.05 −5.42 11.56 hours ∼ 9× 29ms ∼ 26×
4 cnn + raw + {−2, +1} 24.89 −2.26 19.08 hours ∼ 5.6× 30ms ∼ 26×
5 cnn + raw + {−1, +2} 27.31 −4.68 21.63 hours ∼ 5× 32ms ∼ 24×
6 cnn + raw + {−2, +2} 29.05 −6.42 24.42 hours ∼ 4.4× 89ms ∼ 8.7×

predefined alignments. Techniques based on Convolutional neural
networks (CNNs) transcribe raw speech utterances directly into
phones, eliminating the step of hand-crafted feature extraction
[11–16]. In this paper, inspiration from the work done on CNNs
in [10] and [6] is taken to build an E2E ASR system and learn
short term contextual temporal features on acoustic frames using
convolutional layers. Three low resource Indic languages, Gujarati,
Telugu, and Tamil are used with a combined training dataset of 75
hours. WER is used as the evaluation metric for all the experiments.

The contribution of this paper is two-fold:
(1) We have shown that CNNs can be used as a viable solution

for building E2E robust multilingual ASR systems.
(2) We have proposed a methodology that can be used to quickly

bootstrap multilingual ASR systems and validate the compat-
ibility of different languages in a joint multilingual setting.

2 EXPERIMENTAL DATA
The Data is a subset of Interspeech 2018’s Low Resource Speech
Recognition Challenge for Indian languages by Microsoft and Spee-
chOcean.com dataset 1 [14].

India is a country with more than 1500 recognized languages.
Out of these, 30 languages have more than one million speakers
and 22 languages have been accorded with the official status [16].
Such diversity in spoken languages poses a significant challenge in
obtaining sizable training data to train robust monolingual systems
for each of these languages. This dataset was released as an effort
to explore robust multilingual systems as a means to overcome
the challenge of data limitations. The data includes three Indic
languages namely Gujarati, Tamil, and Telugu spoken by multiple
speakers. The combined training data of all three languages is 75
hours. The test and the validation data are 5 hours per language.
Text transcription along with the lexicon for the entire data is
included in the dataset. State of the art systems were built on the
full dataset, which has 120 hours of trainable data. The baseline
DNN based system in the challenge has a WER of 27.79, 34.97, and
25.47 on Gujarati, Telugu, and Tamil respectively [14].

3 RESULTS
Table 1 presents a comparative analysis of computational time and
average WER degradation of different configurations against the
1The dataset is available at https://msropendata.com/datasets/7230b4b1-912d-400e-
be58-f84e0512985e.

baseline model. The unit of the training time is kept variable to
enable better readability. The inference time is calculated as 𝑇 /𝑁
where 𝑇 is the total inference time on the test set and 𝑁 is the
number of examples. All the models are trained, and inferences
are drawn on single-core NVIDIA TITAN Xp GPUs in a multi-core
GPU setup.

Our best model achieves a WER of 21.13, 27.80, and 25.76 on
Gujarati, Telugu, and Tamil respectively with 2 left and 1 right
context window (Exp 4, Table 1). The results are comparable to
the baseline with an average degradation of only 2.26 WER. A
computation boost of 5.6× in training time and 26× in inference
time is obtained with this configuration taking only an average of
30ms to infer on an average of 5.85s long speech utterance compared
to 780ms on the baseline. It is observed from Table 1 that decreasing
the size of the context window boosts up the training and inference
computations but at a cost of degradation in the WERs. Models
trained on acoustic frames with no context (Exp 2) and large context
(Exp 6) observe a significant average degradation of ∼ 6.2WER. This
indicates no context doesn’t provide all the relevant articulation
and coarticulation information for the phones while providing large
contexts introduces more noise than relevancy. It is also observed
that adding more context on the left (Exp 4) gives slightly better
WER as compared to adding more context on the right (Exp 5)
for the same context window size with comparable training and
inference time speed up indicating that the left context contains
more relevant information compared to the right context.

4 CONCLUSION
In this paper, a non-sequential discriminative approach based on
the features extracted by CNNs is investigated. Experimental re-
sults show that such systems vastly reduce the training and infer-
ence time while producing comparable WERs against our baseline
sequential model based on RNN. This shows great potential and
promise for CNN based architectures in real-time applications for
achieving low latency and can also be used to quickly bootstrap
multiple low resource multilingual ASR systems. It is observed that
a context window of size 2 on the left and 1 on the right produces
the most optimal WERs while boosting the training and inference
time by 5.5 and 65× respectively. CNN based architectures can be
further researched to improve and obtain better WERs compared
to sequential models while speeding up the training and inference
time.
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