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Figure 1: We introduce video-to-video (V2V) face-swapping, a novel task of face-swapping that aims to swap the identity and expressions
from a source face video to a target face video. This differs from the face-swapping task that aims to swap only an identity. There are many
downstream applications of V2V face-swapping, such as automating the process of an actor replacing their double in movie scenes, which
today, is handled manually using expensive CGI technology. In this example, Nolan, an actor (source video), is recording his dialogues and
expressions at the convenience of his home. Joey Tribiani (target video) is acting as his double in a scene of the famous sitcom FRIENDS.
FaceOff face-swaps Nolan into the scene. Please note the zoomed-in source (yellow box) and face-swapped (red box) output. In this output,
although the source face pose and skin complexion has changed and blended with the background, identity and expressions are preserved.

Abstract

Doubles play an indispensable role in the movie indus-
try. They take the place of the actors in dangerous stunt
scenes or in scenes where the same actor plays multiple
characters. The double’s face is later replaced with the ac-
tor’s face and expressions manually using expensive CGI
technology, costing millions of dollars and taking months to
complete. An automated, inexpensive, and fast way can be
to use face-swapping techniques that aim to swap an iden-
tity from a source face video (or an image) to a target face
video. However, such methods can not preserve the source
expressions of the actor important for the scene’s context.
To tackle this challenge, we introduce video-to-video (V2V)
face-swapping, a novel task of face-swapping that can pre-
serve (1) the identity and expressions of the source (actor)
face video and (2) the background and pose of the target
(double) video. We propose FaceOff, a V2V face-swapping

system that operates by learning a robust blending oper-
ation to merge two face videos following the constraints
above. It first reduces the videos to a quantized latent space
and then blends them in the reduced space. FaceOff is
trained in a self-supervised manner and robustly tackles the
non-trivial challenges of V2V face-swapping. As shown in
the experimental section, FaceOff significantly outperforms
alternate approaches qualitatively and quantitatively.

1. Introduction

Having doubles' for the starring actors in movies is an
indispensable component of movie-making. A double may
take the actor’s place during stunt scenes involving difficult
and dangerous life-risking acts. They may even stand-in for
the actor during regular fill scenes or multiple retakes. For

Uhttps://en.wikipedia.org/wiki/Double_(filmmaking)
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instance, ‘The Social Network’ extensively used body dou-
bles as a stand-in for actor Armie Hammer who played mul-
tiple roles of twin brothers?3*. In such scenes, the double’s
face is later replaced by the actor’s face and expressions us-
ing CGI technology requiring hundreds of hours of manual
multimedia edits on heavy graphical units costing millions
of dollars and taking months to complete. Thus, the produc-
tion team is generally forced to avoid such scenes by chang-
ing the mechanics of the scene such that only the double’s
body is captured to provide an illusion of the actor. This
may act as a constraint to the director’s creativity. However,
such adjustments are not always possible.

A different scenario is post-production scene modifica-
tions. If a dialogue is discovered in post-production that
suits a scene better than the original, the entire scene is reset
and re-shot. We propose that the actor could instead record
in a studio and get their face superimposed on the previous
recording. In fact, like other industries, the movie indus-
try is also headed in this direction where actors can work
from home. In today’s era, CGI technologies can produce
incredible human structures, scenes, and realistic graphics.
However, it is known that they struggle to create realistic-
looking skin’. As shown in Fig. 1, an actor could lend their
identity and expressions from the comfort of their home or
studio while leaving the heavy-duty to graphics or a double.
Today’s CGI technologies needed for such tasks are, how-
ever, manually operated, expensive and time-consuming.

To automate such tasks, fast and inexpensive computer
vision based face-swapping [17, 23, 15, 14, 11, 1] tech-
niques that aim to swap an identity between a source (ac-
tor) video and target (double) video can be considered.
However, such techniques cannot be directly used. Face-
swapping swaps only the source identity whilst retaining
the rest of the target video characteristics. In this case, the
expressions of the actor (source) are not captured in the out-
put. To tackle this, we introduce “video-to-video (V2V)
face-swapping” as a novel task of face-swapping that aims
to (1) swap the identity and expressions of a source face
video and (2) retain the pose and background of the target
face video. The target pose is essential as it depends on
the scene’s context. E.g., a stunt man performs at an out-
door location dealing with machines or talking to a fellow
double; the actor acts in front of a green screen at a studio.
Here, the double’s pose is context-aware, and the actor only
improvises.

How is the proposed task a video-to-video face-
swapping task? Unlike the face-swapping task that swaps
a fixed identity component from one video to another video,
V2V face-swapping swaps expressions changing over time

2Captain America - Skinny Steve Rogers Behind the Scenes

3How CGI made Cody and Caleb as PAUL WALKER — VFX

4 Armie Hammer Didn’t Play Both Winklevoss Twins Social Network
SWhy It’s SO HARD To Do CGI Skin!

(a video) with another video with changing pose and back-
ground (another video), making our task video-to-video.

Approach: Swapping faces across videos is non-trivial
as it involves merging two different motions - the actor’s
finer face motion (such as eye, cheek, or lip movements)
and the double’s head motion (such as pose and jaw mo-
tion). This needs a network that can take two different mo-
tions as input and produce a third coherent motion. We pro-
pose FaceOff, a video-to-video face swapping system that
operates by reducing the face videos to a quantized latent
space and blending them in the reduced space. A funda-
mental challenge in training such a network is the absence
of ground truth. Face-swapping approaches [23, 15, 7] use
a discriminator-generator setup for training the networks.
The discriminator is responsible for monitoring the desired
characteristic of the swapped output. However, using a dis-
criminator leads to hallucinating components of the output
different from the input. For instance, modified identity or
novel expressions. Thus, we devise a self-supervised train-
ing strategy for training our network: We use a single video
as the source and target. We then introduce pseudo motion
errors on the source video. Finally, we train a network to
‘fix’ these pseudo errors to regenerate the source video.

FaceOff can face-swap unseen cross-identities directly at
inference without any finetuning. Moreover, unlike most of
the face-swapping methods that need inference time opti-
mization ranging from 5 minutes to 24 hours on high-end
GPUs, FaceOff face-swaps videos in just one forward pass
taking less than a second. A key feature of FaceOff is that it
preserves at least one of the input expressions (source in our
case), whereas, as we show later, existing methods fail to
preserve either of the expressions (source or target expres-
sions). Lastly, we curate and benchmark V2VFaceSwap,
a V2V face-swapping test dataset made of instances from
unconstrained YouTube videos on unseen identities, back-
ground, and lighting conditions.

Our contributions in this work are as follows: (1)
We introduce V2V face-swapping, a novel task of face-
swapping that aims to swap source face identity and expres-
sions whilst retaining the target background and pose. (2)
We propose FaceOff: a V2V face-swapping system trained
in a self-supervised manner. FaceOff generates coherent
videos by merging two different face videos. (3) Our ap-
proach works on unseen identities directly at the inference
time without any finetuning. (4) Our approach does not
need any inference time optimization taking less than a sec-
ond for inference. (5) We release V2VFaceSwap test dataset
and establish a benchmark for V2V face-swapping task.

2. Related Work

Table 1 provides a comparison between the existing tasks
and FaceOff. FaceOff aims to solve a unique challenge of
V2V face-swapping that has not been tackled before.
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Source Target
Method Identity | Expression | Pose | Background
Face Swapping v x v v
Face Reenactment X v X v
Face Editing X x v v
FaceOff (Ours) v v v v

Table 1: Comparison of FaceOff with existing tasks. v'and
x indicate the characteristic is preserved and lost respec-
tively. FaceOff solves a unique task of preserving source
identity and expressions that has not been tackled before.

Face Swapping: Swapping faces across images and
videos have been well-studied [17, 15, 23, 2, 10, 11, 14, 1,
] over the years. These works aim to swap an identity ob-
tained from a source video (or an image) with a target video
of a different identity such that all the other target charac-
teristics are preserved in the swapped output. DeepFakes®,
DeepFaceLlabs [17], and FSGAN [15] swap the entire iden-
tity of the source; Motion-coseg [23] specifically swaps the
identity of single/multiple segments of a given source image
(either hair or lips or nose, etc.) to a target video. Unlike
these approaches that swap only the identity or a specific
part of an image, we swap temporally changing expressions
along with the identity of the source. Moreover, FSGAN
takes 5 minutes of inference time optimization, DeepFace-
Labs and DeepFakes take up to 24 hours of inference time
optimization on high-end GPUs. FaceOff takes less than a
second to face swap in-the-wild videos of unseen identities.
Face Manipulation: Face manipulation animates the
pose and expressions of a target image/video according to
a given prior [30, 24, 22, 31, 17, 33, 25, 35]. In audio-
driven talking face generation [18, 19, 12, 34, 25, 21, 7],
the expressions, pose, and lip-sync in the target video
are conditioned on a given input speech audio. Unlike
such works, we do not assume an audio prior for our ap-
proach. A different direction of face reenactment animates
the source face movements according to the driving video
[26, 21, 27, 9, 22, 24]. The identity is not exchanged in
these works. This can tackle a special case of our task —
when the target and source have the same identity. Here, a
target image can be re-enacted according to the source video
expressions. As we show in Section 4.2, FaceOff captures
the micro-expression of the driving video, unlike the ex-
isting approaches. This is because we rely on a blending
mechanism - allowing a perfect transfer of the driving ex-
pressions. Another direction that handles this special case
is face editing that involves editing the expressions of a
face video. Using this approach, one can directly edit the
target video according to the source expressions. Image-
based face editing works such as [8, 4, 5, 13] have gained
considerable attention. However, realizing these edits on a

Shttps://github.com/deepfakes/faceswap

sequence of frames without modeling the temporal dynam-
ics often results in temporally incoherent videos. Recently,
STIT [28] was proposed that can coherently edit a given
video to different expressions by applying careful edits in
the video’s latent space. Despite the success, these tech-
niques allow limited control over the types and variations
in expressions. Moreover, obtaining a correct target expres-
sion that matches the source expressions is a manual hit and
trial. FaceOff can add micro-expressions undefined in the
label space simply by blending the emotion from a different
video of the same identity with the desired expressions.

3. FaceOff: Face Swapping in videos

We aim to swap a source face video with a target face
video such that (1) the identity and the expression of the
source video is preserved and (2) the pose and background
of the target video is retained. To do this, we learn to blend
the foreground of the source face video with the background
and pose of the target face video (as shown in Fig. 3) such
that the blended output is coherent and meaningful. This is
non-trivial as it involves merging the two separate motions
(finer foreground expression motion of the source; head and
background motion of the target). Please note that we only
aim to blend the two motions, thus, the desired input char-
acteristics — identity, expressions, pose, and background —
are naturally retained from the inputs without any additional
supervision. The main challenge of our blending approach
is to align the foreground and background videos in a way
that the output forms a coherent identity and has a single co-
herent pose. All the other characteristics are simply recon-
structed from the inputs. Our core idea is to use a special
temporal autoencoding model that merges these motions us-
ing a quantized latent space. Overall, our approach relies
on (1) Encoding the two input motions to a quantized la-
tent space and learning a robust blending operation in the
reduced space. (2) A temporally and spatially coherent de-
coding. (3) In the absence of ground truth, a self-supervised
training scheme.

3.1. Merging Videos using Quantized Latents

We pose face-swapping in videos as a blending problem:
given two videos as input, blend the videos into a coherent
and meaningful output. To do so, we rely on an encoder to
encode the input videos to a meaningful latent space. Our
overall network is a special autoencoder that can then learn
to blend the reduced videos in the latent space robustly and
generate a blended output. We select our encoder model
carefully, focusing on “blending” rather than learning an
overall data distribution. Encoder networks with a contin-
uous latent space reduce the dimension of a given input,
often down to a single vector that can be considered a part
of an underlying distribution. This latent vector is highly
stochastic; a very different latent is generated for each new
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340 the face, f, and background, b, from a single video, s. We then apply “pseudo errors” made of random rotation, translation, 394
341 scaling, colors, and non-linear distortions to modify f. Next, modified f (acting as a source) and b (acting as a target) 395
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364 to the target pose and background — FaceOff aims to gen- 418
365 input, introducing high variations that a decoder needs to erate a three channel blended video output. Therefore, the 419
366 handle. Recently, “vector quantization” was proposed in loss computation is between a ground truth three-channel 420
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FaceOff

DeepFacelLabs

Figure 4: Existing face-swapping methods [17, 23, 15] use
a generator-discriminator training strategy. This results in
outputs with novel expressions as explained in Sec. 3.2. We
show this phenomenon on DeepFaceLabs [17]. The expres-
sions in the output (red boxes) does not match either of the
inputs, source or target. E.g., direction of the eye gaze (sec-
ond row), or overall laugh expression (first row). FaceOff
succesfully preserves the source expressions (green boxes).

pressions. We show this phenomenon in Fig. 4. A hard
distance loss (e.g. Euclidean distance) indicating the ex-
act output-ground truth relationship instead of a stochastic
discriminator loss can be used to overcome this issue. In
V2V face-swapping, an important aspect is to retain the ex-
act source expressions. Thus, we train our network using a
distance loss by devising a self-supervised training scheme
that forces the network to reconstruct a denoised version of
a given input video allowing us to use a distance loss.

To understand the training scheme, we first look at the
challenges we encounter when trying to blend two motions
naively. First, there is a global and local pose difference be-
tween the faces in the source and target videos. We fix the
global pose difference by aligning (rotating, translating, and
scaling) the source poses according to the target poses us-
ing face landmarks, as shown in Fig. 3. However, the local
pose difference is not overcome this way, and we observe
temporal incoherence across the frames. Next, we observe
a difference in the foreground and background color (illu-
mination, hue, saturation, and contrast). Thus, we train our
network to solve these known issues by reproducing these
errors during training. As illustrated in Fig. 2, we train our
model in the following manner: (1) Take a video, say s. (2)
From s, extract the face region, say f; and the background
region, say b. (3) Introduce pseudo errors (rotation, color,
scale, etc.) on f. (4) Construct the input v by concatenat-
ing f and b channel-wise at every corresponding frame. (5)
Train the network to construct s from v. Although we train
the network using the same identity in the self-supervised
scheme, it can face-swap unseen identities directly at infer-

ence without any finetuning. We encourage our readers to
view the supplementary video for results.

3.3. Reproducing Inference Errors at Training

Given two talking-head videos, source and target de-
noted by S and T respectively, our aim is to generate an
output that preserves (1) the identity and the emotions from
S and (2) the pose and background from 7. We assume
the number of frames, denoted by IV, in S and T are equal.
Given two frames, s; € S and ¢t; € T such that7 = 1...N,
we denote f;, € F, and b;, € B; as the foreground and
background of s; and ¢; respectively. Given Fs and B, as
input, the network fixes the following issues:

First, the network encounters a local pose difference be-
tween f,, and b;,. This pose difference can be fixed using an
affine transformation function: 6(fs,,b;,) = m(rfs, +d) +
m(rbs, +d) where m, r, and d denote scaling, rotation, and
translation. Face being a non-rigid body, this affine transfor-
mation only results in the two faces with a perfect match in
pose but a mismatch in shape. One can imagine trying to fit
a square in a circle. One would need a non-linear function to
first transform the square to a shape similar to the circle so
that they fit. We denote this non-linear transformation as a
learnable function w( fs,, by, ). Being non-linear in nature, a
network can perform any one of many such transformations
on the input frames as long as both faces fit. These trans-
formations can be constrained using a distance loss to en-
courage spatially-consistent transformations that generate a
coherent and meaningful frame. However, these spatially-
consistent transformations may be temporally-inconsistent
across the video. This would result in a video with a face
that wobbles as shown in the ablation Sec. 5. Thus, we
constrain the transformations as w(fs,, bt,, fs,, bt, ) Where
k = 1..N such that k # i. Here, the transformation on the
current frame is constrained by the transformations on all
the other frames in the video. This is enabled by the tem-
poral module as explained in Sec. 3.1. Lastly, the network
encounters a difference in color (contrast, hue, saturation,
etc.) between f,, and by, that is fixed as ¢(fs,, by, ).

As shown in Fig. 2, at the time of training S = 7. For
each frame s; € S, we first extract the foreground, fs, € Fy
(acting as the source) and the background, b;, € B; (act-
ing as the target) from s;. Next, we apply random rotation,
translation, scaling, color, and distortion (Barrel, Mustache)
errors on f,. The training setting is then formulated as:

D : Q(0,w,c) (D

1 N
J= ;[si = @(faisbrs For b)) + P(Fs, Br) - ()

where €2 is a learnable function, J is the overall cost of
the network to be minimized, and P is a perceptual metric
(LPIPS [32] in our case), and k = 1... N such that k& # 4.
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source

target

DeepFakes

Inference Cost 9000 x 9000 x _

DeepFacelabs

(Ours

i |

1.5x%

Figure 5: “Inference Cost” denotes the time taken for a single face-swap. FSGAN, with 400 x FaceOff’s inference cost, fails
to swap the identities fully. DeepFakes and DeepFaceLabs swap the identities successfully but are 9000 less efficient than
FaceOff. FaceOff perfectly swaps source identity and expressions. None of the other methods can swap source expressions.

Quantitative Evaluation Human Evaluation
Method SPIDis| LMD | TL-IDT TG-ID1T FVD/| | Identityt Exps.T Ntrl. 1
Motion-coseg [23] 0.48 0.59 0.872 0.893 293.652 6.82 5.81 7.44
FSGAN [15] 0.49 0.57 0.914 0.923  242.691 7.84 6.83 8.31
FaceOff ( Ours ) 0.38 0.41 0.925 0.915 255.980 9.64 9.86 8.18

Table 2: Quantitative metrics on V2VFaceSwap dataset. DeepFakes and DeepFaceLabs take upto 24 hours for best inference
on a single face-swap [17], thus we do not compare with them. The metrics used for comparisons is explained in Sec. 4.
For fair comparisons, FSGAN scores are reported without any inference time optimization. Although FSGAN has a slightly
higher FVD and Naturalness (Ntrl.) score, it fails to swap the identity fully as can be clearly seen from SPIDis, LMD, and
Identity metric. Moreover, the difference in the FVD of FSGAN and FaceOff is not statistically significant perceptually [29].

4. Experiments and Results

In this section, we try to answer the following questions:
(1) How well can we preserve the source identity compared
to the alternate approaches? (2) How well do we preserve
the expressions of the input videos? (3) How efficient is
FaceOff when compared to other techniques?

We compare FaceOff against different tasks: “face-
swapping”, “face reenactment”, and “face editing”. Please
note that none of these methods can fully solve the task of
V2V face-swapping that we aim to solve. Specifically, V2V
face-swapping aims to (1) swap source identity and expres-
sions and (2) retain the target pose and background.

Quantitative Metrics: (1) Source-Prediction Identity
Distance (SPIDis): computes the difference in identity be-
tween face images. It is computed as the euclidean distance
between the face embeddings generated using dlib’s face
detection module. (2) Fréchet Video Distance (FVD), as

proposed in [29], computes the temporal coherence in the
generated video output. (3) Landmark Distance (LMD):
evaluates the overall face-structure and expressions of the
source and swapped-output. To compute LMD, the source,
and the swapped face landmarks are normalized: faces are
first centered and then rotated about the x-axis such that
the centroid and angle between the eye coordinates, respec-
tively align a mean image. Next, the faces are scaled with
respect to the mean image. Euclidean distance between the
normalized swapped and source video landmarks gives the
LMD. We compute LMD between the source and the output
face expressions (excluding the landmarks of the face per-
miter). (4) Temporally Locally (TL-ID) and Temporally
Globally (TG-ID) Identity Preservation: proposed in [28].
They evaluate a video’s identity consistency at a local and
global level. For both metrics, a score of 1 would indicate
that the method successfully maintains the identity consis-
tency of the original video.
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---» Output <----------- Target

Source --------

Figure 6: Qualitative results of FaceOff. Note that there is a significant difference in the source and target expressions in all
the cases. FaceOff swaps the source expressions (mouth, eyes, etc.) and identity; and retains the target pose and background.

Qualitative Metrics: A mean absolute opinion score on
a scale of 1 — 10 is reported for (1) Identity: How similar is
the swapped-output identity with the source identity? (2)
Expressions (Exps.): How similar is the swapped-output
expression with the source expression?, and (3) Naturalness
(Ntrl.): Is the generated output natural?

Experimental Dataset: We benchmark V2VFaceSwap
dataset made of unconstrained YouTube videos, with many
unseen identities, backgrounds, and lighting conditions.

We strongly encourage our readers to view the supple-
mentary video for best experience. Subjective human opin-
ion, further details about the dataset, and evaluation setup
are reported in the supplementary paper.

4.1. Face-Swapping Results

Fig. 5 and Table 2 present a qualitative and quantita-
tive comparison respectively between the existing methods
and FaceOff. Fig. 6 demonstrates FaceOff’s face-swapping
results on videos. As shown in Fig. 5, FaceOff success-
fully swaps the identity and expressions of the source face
video. Existing methods cannot swap the source expres-
sions which shows that FaceOff solves a unique challenge
of V2V face-swapping. An interesting finding of our ex-
periments is that the existing methods do not preserve any
of the input expressions — source or target — at the output
and generates novel expressions, e.g., novel gaze direction
or mouth movements. This phenomenon is also demon-
strated in Fig. 4. FSGAN and Motion-Coseg fail to swap
the identity entirely. This is further corroborated through
quantitative metrics in Table 2. As shown, FaceOff has an
improvement of ~ 22% and ~ 28% on SPIDis and LMD

Face-Vid2Vid STIT FaceOff (Ours

source target

Figure 7: Qualitative demonstration of Face Manipulation.
As can be seen, none of the methods, except FaceOff, pre-
serve the source expressions or pose information perfectly.

over FSGAN, clearly indicating FaceOff’s superiority.

FSGAN achieves a slightly higher FVD and is voted
more natural in human evaluation. This is expected as FS-
GAN does not change the target identity much and thus
retains the original target video making it more natural to
observe. FaceOff swaps identity near-perfectly. Moreover,
existing methods only have a single target motion to fol-
low. FaceOff tackles an additional challenge of motion-to-
motion swapping that needs source-target pose alignment at
every frame in a temporally coherent manner. This requires
FaceOff to generate a novel motion such that the identity,
expressions, and pose in the motion look natural and match
the inputs. Despite this challenge, the difference in FSGAN
and FaceOff’s FVD is not perceptually significant, as stated
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in [29]. DeepFaceLabs and DeepFakes swap identity well
but are 9000 x more computationally expensive than Face-
Off, making FaceOff much more scalable and applicable in
the real world.

4.2. Target Face Manipulation Results

Given that the source and target have the same identity,
the problem reduces to the following - transfer expressions
from a source video to a target video. This is fundamentally
the setting of “face reenactment”. One could also modify
the expression of the target by identifying and quantifying
the source expressions and using a “face-editing” network
to edit the target expressions. Fig. 7 presents a qualitative
comparison between FaceOff, “face reenactment” (Face-
Vid2Vid) and “face-editing” (STIT).

Face Reenactment: We compare against Face-
Vid2Vid [30], a SOTA face reenactment network that reen-
acts the pose and expression of a target image using source
(driving) video. As shown in Fig. 7, FaceOff preserves
source’s micro-expression such as, exact mouth opening,
eye-frown. As FaceOff relies on a deterministic distance
loss, it can retain the exact input expressions in the out-
put. Moreover, FaceOff retains the temporal target pose and
background whereas Face-Vid2Vid modifies a static frame.

Face Editing: Using a powerful neural network, one
can simply introduce the desired expressions in a video
by performing edits. We compare our method against
STIT [28]. STIT modifies the expressions of a face video
based on an input label. We observe the source expression
and manually try out the various intensity of the “smile”
emotion ranging from the negative to positive direction. As
seen in Fig. 7, although STIT can change the overall expres-
sion, it needs a significant manual hit-and-trial to pinpoint
the exact expression. It also lacks personalized expression
(amount of mouth opening, subtle brow changes). Also,
each and every expression cannot be defined using a single
label, and introducing variations in emotion along the tem-
poral dimension is hard. With our proposed method, one
can incorporate any emotion in the video (as long as we
have access to a source video).

5. Ablation Study

We investigate the contribution of different modules and
errors in achieving FaceOff. Fig. 8 demonstrates the perfor-
mance of FaceOff without the proposed temporal module.
As shown, although at a frame level, the output is spatially-
coherent, as we look across the frames, we can notice the
temporal incoherence. The face seems to ‘wobble’ across
the frames - squishing up and down. In fact, without the
temporal module, the network does not understand an over-
all face structure and generates unnatural frames (marked
in red). Jumping from one red box to another, we can
see that the face structure has completely changed. This

Figure 8: FaceOff without Temporal Module. As we jump from
one frame to another (red boxes), we can observe a ”wobble ef-
fect”: significant change in the facial structure (elongated and then
squeezed). This occurs as the model does not have an understand-
ing of the neighboring frames while generating the current frame.

Component | SPIDis| LMD | FVD|
FaceOff \ 0.38 0.41 255.980
w/o Temporal. 0.71 0.49 350.60
w/o Rotation 0.65 0.44 292.76
w/o Color 0.74 0.42 303.35
w/o Translation 0.58 0.47 271.82
w/o Distortion 0.55 0.45 285.54

Table 3: We remove different components and errors and evaluate
their contributions in achieving FaceOff.

suggests that constraining the network by the neighboring
frames using the temporal module enables the network to
learn a global shape fitting problem, consequently generat-
ing a temporally coherent output.

Table 3 presents the quantitative contribution of the tem-
poral module and each of the errors used for self-supervised
training. The metrics indicate that each of them contributes
significantly to achieving FaceOff.

6. Conclusion

We introduce “video-to-video (V2V) face-swapping”, a
novel task of face-swapping. Unlike face-swapping that
aims to swap an identity from a source face video (or an
image) to a target face video, V2V face-swapping aims to
swap the source expressions along with the identity. To
tackle this, we propose FaceOff, a self-supervised temporal
autoencoding network that takes two face videos as input
and produces a single coherent blended output. As shown
in the experimental section, FaceOff swaps the source iden-
tity much better than the existing approaches while also be-
ing 400x computationally efficient. It also swaps the exact
source identity that none of the methods can do. V2V face-
swapping has many applications, a significant application
can be automating the task of replacing the double’s face
with the actor’s identity and expressions in movies. We be-
lieve our work adds a whole new dimension to movie edit-
ing that can potentially save months of tedious manual effort
and millions of dollars.

WACV
#615

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863



WACV
#615

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

WACYV 2023 Submission #615. | Algorithms Track. | CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

Dmitri Bitouk, Neeraj Kumar, Samreen Dhillon, Peter Bel-
humeur, and Shree K. Nayar. Face swapping: Automati-
cally replacing faces in photographs. ACM Trans. Graph.,
27(3):1-8, aug 2008. 2, 3

Renwang Chen, Xuanhong Chen, Bingbing Ni, and Yanhao
Ge. SimSwap. In Proceedings of the 28th ACM International
Conference on Multimedia. ACM, oct 2020. 3

Yi-Ting Cheng, Virginia Tzeng, Yu Liang, Chuan-Chang
Wang, Bing-Yu Chen, Yung-Yu Chuang, and Ming Ouhy-
oung. 3d-model-based face replacement in video. 01 2009.
3

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. 2017. 3

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains,
2019. 3

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis, 2020. 4

P. Garrido, L. Valgaerts, H. Sarmadi, I. Steiner, K. Varanasi,
P. Pérez, and C. Theobalt. Vdub: Moditying face video of
actors for plausible visual alignment to a dubbed audio track.
Comput. Graph. Forum, 34(2):193-204, may 2015. 3
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adver-
sarial networks, 2016. 3

Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng
Xu, Justus Thies, Matthias Niener, Patrick Pérez, Christian
Richardt, Michael Zollofer, and Christian Theobalt. Deep
video portraits. ACM Transactions on Graphics (TOG),
37(4):163, 2018. 3

Iryna Korshunova, Wenzhe Shi, Joni Dambre, and Lucas
Theis. Fast face-swap using convolutional neural networks,
2016. 3

Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, and Fang
Wen. Faceshifter: Towards high fidelity and occlusion aware
face swapping, 2019. 2, 3

Ian Magnusson, Aruna Sankaranarayanan, and Andrew
Lippman. Invertible frowns: Video-to-video facial emotion
translation, 2021. 3

Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets, 2014. 3

J. Naruniec, L. Helminger, C. Schroers, and R.M. We-
ber. High-resolution neural face swapping for visual effects.
Computer Graphics Forum, 39:173-184, 07 2020. 2, 3
Yuval Nirkin, Yosi Keller, and Tal Hassner. Fsgan: Subject
agnostic face swapping and reenactment, 2019. 2, 3,5, 6
Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu.  Neural discrete representation learning,
2017. 4

Ivan Perov, Daiheng Gao, Nikolay Chervoniy, Kunlin Liu,
Sugasa Marangonda, Chris Umé, Mr. Dpfks, Carl Shift
Facenheim, Luis RP, Jian Jiang, Sheng Zhang, Pingyu Wu,
Bo Zhou, and Weiming Zhang. Deepfacelab: Integrated,

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

flexible and extensible face-swapping framework, 2020. 2,
3,5,6

K R Prajwal, Rudrabha Mukhopadhyay, Vinay P. Nambood-
iri, and C.V. Jawahar. A lip sync expert is all you need for
speech to lip generation in the wild. In Proceedings of the
28th ACM International Conference on Multimedia. ACM,
oct 2020. 3

Prajwal K R, Rudrabha Mukhopadhyay, Jerin Philip, Ab-
hishek Jha, Vinay Namboodiri, and C V Jawahar. Towards
automatic face-to-face translation. In Proceedings of the
27th ACM International Conference on Multimedia. ACM,
oct 2019. 3

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vg-vae-2, 2019. 4
Yurui Ren, Ge Li, Yuanqi Chen, Thomas H. Li, and Shan
Liu. Pirenderer: Controllable portrait image generation via
semantic neural rendering, 2021. 3

Aliaksandr Siarohin, Stéphane Lathuiliere, Sergey Tulyakov,
Elisa Ricci, and Nicu Sebe. First order motion model
for image animation. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. 3

Aliaksandr Siarohin, Subhankar Roy, Stéphane Lathuiliere,
Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. Motion-
supervised co-part segmentation. 2020. 2, 3, 5, 6
Aliaksandr Siarohin, Oliver J. Woodford, Jian Ren, Menglei
Chai, and Sergey Tulyakov. Motion representations for ar-
ticulated animation. 2021. 3

Justus Thies, Mohamed Elgharib, Ayush Tewari, Christian
Theobalt, and Matthias Niefner. Neural voice puppetry:
Audio-driven facial reenactment. 2019. 3

Justus Thies, Michael Zollhofer, and Matthias Niefiner. De-
ferred neural rendering: Image synthesis using neural tex-
tures, 2019. 3

Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-
tian Theobalt, and Matthias Niener. Face2face: Real-time
face capture and reenactment of rgb videos. 2020. 3

Rotem Tzaban, Ron Mokady, Rinon Gal, Amit H. Bermano,
and Daniel Cohen-Or. Stitch it in time: Gan-based facial
editing of real videos, 2022. 3, 6, 8

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphael Marinier, Marcin Michalski, and Sylvain Gelly. To-
wards accurate generative models of video: A new metric
challenges, 2018. 6, 8

Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot
free-view neural talking-head synthesis for video conferenc-
ing, 2020. 3, 8

Wayne Wu, Yunxuan Zhang, Cheng Li, Chen Qian, and
Chen Change Loy. Reenactgan: Learning to reenact faces
via boundary transfer, 2018. 3

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric, 2018. 5

Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie Fan.
Flow-guided one-shot talking face generation with a high-
resolution audio-visual dataset. In 2021 IEEE/CVF Confer-

WACV
#615

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971



WACV WACV

#615 #615
WACYV 2023 Submission #615. | Algorithms Track. | CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

972 ence on Computer Vision and Pattern Recognition (CVPR), 1026
3 pages 3660-3669, 2021. 3 1027
974 [34] Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy, 1028
975 Xiaogang Wang, and Ziwei Liu. Pose-controllable talking 1029
976 face generation by implicitly modularized audio-visual rep- 1030
977 resentation, 2021. 3 1031
978 [35] Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevarria, 1032
979 Evangelos Kalogerakis, and Dingzeyu Li. MakeltTalk. ACM 1033
980 Transactions on Graphics, 39(6):1-15, dec 2020. 3 1034
981 1035
982 1036
983 1037
984 1038
985 1039
986 1040
987 1041
988 1042
989 1043
990 1044
991 1045
992 1046
993 1047
994 1048
995 1049
996 1050
997 1051
998 1052
999 1053
1000 1054
1001 1055
1002 1056
1003 1057
1004 1058
1005 1059
1006 1060
1007 1061
1008 1062
1009 1063
1010 1064
1011 1065
1012 1066
1013 1067
1014 1068
1015 1069
1016 1070
1017 1071
1018 1072
1019 1073
1020 1074
1021 1075
1022 1076
1023 1077
1024 1078

1025 1079



