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Figure 1: Lipreading is a primary mode of communication for people with hearing loss. The United States of America alone is home to
48 million people who are dealing with some form of hearing loss. Despite these staggering stats, online resources for lipreading training
is scarce and are available for only a handful of languages. However, hosting new lipreading training platforms is an extensive ordeal that
can take months of manual effort. We propose a fully-automated approach towards building large-scale lipreading training platforms. Our
approach enables any language, any accent, and unlimited vocabulary on any identity! We envision a lipreading MOOCs platform to enable
millions of people with hearing loss across the globe. In this work, we provide a thorough analysis of the viability of such an approach.

Abstract

Many people with some form of hearing loss consider
lipreading as their primary mode of day-to-day communica-
tion. However, finding resources to learn or improve one’s
lipreading skills can be challenging. This is further exac-
erbated in COVID19 pandemic due to restrictions on direct
interactions with peers and speech therapists. Today, online
MOOCs platforms like Coursera and Udemy have become
the most effective form of training for many kinds of skill de-
velopment. However, online lipreading resources are scarce
as creating such resources is an extensive process needing
months of manual effort to record hired actors. Because
of the manual pipeline, such platforms are also limited in
the vocabulary, supported languages, accents, and speak-
ers, and have a high usage cost. In this work, we investi-
gate the possibility of replacing real human talking videos
with synthetically generated videos. Synthetic data can be
used to easily incorporate larger vocabularies, variations in
accent, and even local languages, and many speakers. We

propose an end-to-end automated pipeline to develop such a
platform using state-of-the-art talking heading video gener-
ator networks, text-to-speech models, and computer vision
techniques. We then perform an extensive human evalua-
tion using carefully thought out lipreading exercises to val-
idate the quality of our designed platform against the exist-
ing lipreading platforms. Our studies concretely point to-
wards the potential of our approach for the development of
a large-scale lipreading MOOCs platform that can impact
millions of people with hearing loss.

1. Introduction

Communication is a crucial ingredient that makes Hu-
mans the most intelligent species on the planet. While other
animals also have different forms of communication, hu-
man language is more advanced in several orders of mag-
nitudes. But, we are not inherently born with these skills!
Then, how do we acquire them? Most of us learn linguis-
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Figure 2: Talking-face video generated using our pipeline.

tic skills through a formal education system consisting of
schools, universities, and other organizations related to ed-
ucation. While this is still the most trusted & popular way
of imparting education, the 21st century has seen an expo-
nential rise in online forms of education like the Massive
Open Online Courses (MOOCs). Online courses are gen-
erally designed to cover hundreds of topics in various do-
mains, including language, and are often available free of
cost. MOOCs have several advantages over the physical
form of education. They are more accessible, cheap, and
reachable to a broader audience. In today’s world, it is quite
natural to learn a whole new language from the comfort of
your home by attending a high-quality MOOCs course.

Unfortunately, every person does not get the chance to
learn linguistic skills like we usually do. Hearing loss is
a very common form of disability that can become a mas-
sive barrier to education! According to organizations like
WHO1 and Washington Post2, over 5% of the world’s pop-
ulation (432 million adults and 34 million children) and at
least 48 million Americans are deaf with some form of hear-
ing loss. About 500, 000 Americans have a disabling hear-
ing loss that noticeably disrupts communication.

Lipreading is a primary mode of communication for peo-
ple with hearing loss. The Scottish Sensory Censor (SSC)3

quotes “whatever the type or level of hearing loss, a child
is going to need to lipread some of the time”. However,
learning to lipread is not an easy task! Lipreading can be
thought of being analogous to “learning a new language”
for people without hearing disabilities. People needing this
skill undergo formal education in special schools and in-
volve medically trained speech therapists. Other resources
like daily interactions also help understand and decipher
language solely from lip movements. However, these re-
sources are highly constrained and inadequate for the large
number of patients suffering from hearing disabilities.

Inspired by the boom in online courses available for vir-
tually every topic, we envision a MOOCs platform for Lip
Reading Training (LRT) for the hearing disabled.

1Deafness and Hearing Loss | WHO
2As wearing masks becomes the norm, lip readers are left out!
3Factors which help or hinder lipreading | SSC

Current Online Platforms for Lip Reading Training
Platforms like lipreading.org4 and lipreadingpractice5 pro-
vide basic online resources to improve lipreading skills.
These platforms allow users to learn limited levels of
lip reading constrained by resources. Unfortunately, the
amount of vocabulary systematically covered during the ex-
ercises is extremely narrow. The videos also have minimal
real-world variations in head-pose, camera angle, and dis-
tance to a speaker, making it difficult for a lipreader to adapt
to the real world. Finally, since these resources are all avail-
able only in American or British-accented English, it be-
comes challenging for people from other regions to adapt
to their local accents and languages. All the above fac-
tors severely limit the quality of human training. Therefore,
we believe it is quintessential to scale the current lipreading
training platforms to incorporate extensive vocabulary and
introduce variation in videos, languages, and accents. How-
ever, recording videos is a costly affair. It requires expen-
sive camera equipment, studio environments, professional
editors, and a substantial manual effort from the perspec-
tive of a speaker whose videos are being recorded.

To resolve this issue, we approach this from a different
angle and ask: “Can we replace real talking head videos
used for training people suffering from hearing loss with
synthetic versions of the same?” A synthetic talking head
with accurate lip synchronization to a given text or speech
signal can enable the scaling of LRT platforms to more
identities, accents, languages, speed of speech, etc., mak-
ing the training process more rigorous. We take advantage
of the massive progress made by the computer vision com-
munity on synthetic talking head generation and employ a
state-of-the-art (SOTA) algorithm [23] as mentioned below.

We propose a novel approach that can be used to au-
tomatically generate a large-scale database for the devel-
opment of a LRT MOOCs platform. We use SOTA text-
to-speech (TTS) models [7] and talking head generators
like Wav2Lip [23] to generate training examples automat-
ically. Wav2Lip [23] requires driving face videos and driv-
ing speech segments (generated from the TTS in our case)
to generate lip-synced talking head videos according to the
driving speech. It preserves the head-pose, background,
identity, and distance of the person from the camera while
modifying only the lip movements as shown in Fig. 2.

Our approach can lead to an exponential increase in the
amount of online content present on the LRT platforms in
an automated and cost-effective manner. It can also seam-
lessly increase the vocabulary and the number of speakers in
the database. We investigate the implications of our system
for a range of deaf users and perform multiple experiments
to show its effectiveness in replacing the current manually
recorded LRT videos. We show through statistical analysis

4lipreading.org
5lipreadingpractice.co.uk

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.washingtonpost.com/lifestyle/magazine/as-wearing-masks-becomes-the-norm-lip-readers-are-left-out-of-the-conversation/2020/05/22/23dcc4c0-8e19-11ea-a9c0-73b93422d691_story.html
http://www.ssc.education.ed.ac.uk/courses/deaf/ddec05f.html
https://www.lipreading.org/
https://lipreadingpractice.co.uk/Lip-Reading-Information/


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

WACV
#720

WACV
#720

WACV 2023 Submission #720. APPLICATIONS TRACK. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Scraped Videos

Video Selection

Face Detection

Vocabulary

Audio Selection

Text-to-Speech Au
di

o-
Vi

de
o 

Al
ig

nm
en

t M
od

ul
e

Wav2Lip
Real Video

Synthetic Audio LRT Video

Original Video

Lipreading 

Evaluation

Lipreading 

Evaluation

A
na

ly
si

s
SC

O
R

E
SC

O
R

E

Au
di

o
Vi

de
o

Figure 3: Proposed pipeline for generating large-scale lipreading training platform: (a) Video Selection: Videos are scraped from various
online sources (such as YouTube) and invalid videos are filtered out. (b) Audio Selection: Synthetic speech utterances are generated
using vocabulary curated from various online articles. (c) Audio-Visual Alignment Module: A video and a speech utterance is selected
and aligned on each other such that the speech utterance overlaps with the region in the video with lip movements. (d) Wav2Lip: A
state-of-the-art talking head generation model that modifies the lip movements of the video according to the speech utterance. (e) User
Evaluation: A validation step to ensure that users perform comparably on real videos and synthetic videos generated using our approach.

that (1) the performance of the users on lipreading videos
is not significantly different when switching from ‘real’ to
‘generated’ videos, and (2) the benefit of lipreading plat-
forms in one’s native accent through an extensive user study.
We believe our approach towards generating fully synthetic
videos is the first step towards developing a LRT MOOCs
platform to benifit millions of users with hearing loss.

2. Related Work
The usefulness of MOOCs as a medium of education

has been accepted [24] worldwide. Surveys like [11] an-
alyze various aspects of the impact of MOOCs and helps
us understand their positives and negatives. MOOCs are
shown to increase the audience and offer viable alternatives
to the traditional form of education in [19]. The increas-
ing demand for content has also led to improvement in stu-
dent engagement [10, 15]. The requirement for MOOCs
and other forms of online education has skyrocketed since
the beginning of the COVID19 pandemic6. We believe this
trend to continue and impact different types of education re-
quired by people with special needs. Our work also aligns
with assistive technology where Digital media has histori-
cally played an important role. Much of these efforts have
been invested in improving the communication skills of cer-
tain groups. In 2006, [22] published their work on “Baldi”,
a computer-animated tutor to teach children with autism.
Following this, another work [6] has focused on generat-
ing 3D animated tutors for autism-affected children to im-
prove their communication skills. Research aimed at im-
proving the communication skills of the hearing impaired
is also popular. [4] developed a computer-assisted vocabu-
lary for educating the deaf to communicate orally. Special

6The rise of online learning during the COVID-19 pandemic

courses [20] are designed to help people with limited hear-
ing abilities. Human-computer interaction interfaces [5, 1]
targeted for similar groups are also prevalent. Recently a
landmark work [9] targeted to create a home assistant for
people hard of hearing. The main focus of their work was
to incorporate sign language based commands (replacing
speech commands) into a personal assistant. Similar efforts
were made for automatic lipreading in [25, 21].

3. Synthetic Talking Head Database
Our lipreading training database generation pipeline: (1)

Scrapes a set of face videos automatically from the inter-
net. This helps us in covering a large number of identities,
background variations, lip shapes, etc. (2) Post-processes
the scraped videos to filter out invalid faces (such as drastic
pose change) (3) Automatically curates a vocabulary made
of many words and sentences from various online sources.
(4) Generates synthetic speech utterances on the curated vo-
cabulary. (5) Selects a driving face video and a speech ut-
terance to generate synthetic talking head videos using a
SOTA talking head generation model, Wav2Lip in our case.
Wav2Lip modifies the lip movements of the driving video
according to the speech utterance. The rest of the video
(background, pose, etc.) is retained. These synthetic videos
(with or without the speech) are used to train humans in
lipreading. The overall pipeline is illustrated in Fig. 3.

Text-to-Speech System We evaluate several TTS mod-
els: Fastspeech2 [7], Real time voice cloning [13], Glow-
tts [16], and Tacotron2 [26] trained on LibriTTS [28] and
LJSpeech [12]. We evaluate them on different speeds - 1×,
1.5×, 1.7×, 2×, pitch, and volume variations. We col-
lect qualitative feedback from 30 participants without any

https://www.weforum.org/agenda/2020/04/coronavirus-education-global-covid19-online-digital-learning/
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Figure 4: Audio-Video Alignment Module: Lip-sync models such as Wav2Lip modify the lip movements of an ‘Original Video’ (driving
video) according to a given speech utterance. However, naively aligning the audio and video before passing through Wav2Lip can result
in a ‘Misaligned Video’ with residual lip movements as indicated in red-boxes. We design an audio-video alignment module that detects
the mouth movements in the original video. We then align the speech utterance on the region with the mouth movements and add silence
around the aligned utterance. Wav2Lip then generates an ‘Aligned Video’ without any residual lip movements as indicated in green boxes.

hearing loss on the clarity in speech of the generated au-
dios and report the Mean Opinion Scores (MOS) in the
supplementary. For the purpose of our experiments con-
ducted on American-accented English, we use Fastspeech2
with 1× speed configuration pretrained on LJSpeech. For
Indianised English accent, we use an online TTS at7 with
qualitatively similar performance to the speech generated
by FastSpeech2. Please note that the TTS models used in
our pipeline are configurable plug-and-play modules and
can be easily replaced with any other TTS. This allows scal-
ability and variations with little to no manual effort.

Synthetic Talking Head Videos Since 2015, talking head
generation models, that modify the lip movements accord-
ing to a given speech utterance, has gained much traction
in the computer vision community [18, 8, 27]. While some
of these works generate accurate lip-sync, they are trained
for specific speakers requiring large amounts of speaker-
specific data. [2] can be remodeled for generating talk-
ing heads but require far more manual intervention limit-
ing their use in our approach. Recent advances like Lip-
GAN [14] and Wav2Lip [23] are perfect for our approach
since they work for any identity without requiring any

7http://ivr.indiantts.co.in/en/

speaker-specific data. Consequently, we adopt Wav2Lip in
our pipeline. Wav2Lip takes a face video of any identity
(driving face video) and an audio (guiding speech) as in-
puts. The model then modifies the lip movements in the
original video to match the guiding speech. Rest of the
video features such as the background, identity, pose, of the
face is preserved. We use Wav2Lip for generating the syn-
thetic data because of its ability to generate highly accurate
lip-synced talking head videos as shown in Fig. 2 on any
language and voice. The algorithm also works for synthetic
TTS-generated speech segments essential in our case.

3.1. Data Generation Pipeline

Data Collection Module: Random videos are first col-
lected from various online sources such as YouTube. These
random videos introduce real-world variations a lipreader
encounters in the real life, such as, the variations in head-
pose of the speaker, speaker’s distance from the camera
(lipreader), speaker’s complexion, and lip structure. We
post-process these videos with a face-detection model to
detect valid videos. Valid videos are single-identity front-
facing talking head videos with no drastic pose changes.
Speech utterances are generated using TTS models on vo-
cabulary curated automatically from online sources.

http://ivr.indiantts.co.in/en/
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Figure 5: Examples of different protocols used for our user study. (a) lipreading isolated words (WL): the speaker mouths a single word
and the user is expected to select one of the multiple choices presented. (b) lipreading sentences with context (SL): the speaker mouths an
entire sentence. The user is presented with the context of the sentence and is expected to select one of the sentences present in multiple
choices, and (c) lipreading missing words in sentence (MWIS): the speaker mouths an entire sentence. The user is presented with a sentence
with blanks (masked words), the user needs to identify the masked word from the video and sentence context and answer in text format.

Audio-Video Alignment Module: In our next step, we
randomly select a pair of driving speech and a face video.
To generate lip-synced videos using Wav2Lip, we match
the video and speech utterance length by first aligning them
and then padding the speech utterance with silence. Naively
aligning the speech utterance on the driving video can lead
to residual lip movements, as shown in Fig. 4, ‘Misaligned
Video’ row. Wav2Lip does not modify the lip movements
in the driving video in the silent region. As a result, the out-
put contains residual lip movements (indicated in the red
box) from the original video. This can confuse and cause
distress to the user learning to lipread. Our audio-video
alignment module aligns the speech utterance on the video
region with lip movements. This way, Wav2Lip naturally
modifies the original mouth movements to correct speech-
synced mouth movements, while keeping the regions with
no mouth movements untouched. Here, we ensure that the
silent areas of speech coincide with parts in the driving
video with no lip movements as shown in Fig. 4, ‘Aligned
Video’ row. We use lip-landmarks and the rate of change of
the lip-landmarks between a predefined threshold of frames
to detect mouth movements in the face videos. Once we
have detected lip movements, we align the audio on the de-
tected video region and add silences around the speech.

Data Generation: The aligned speech utterance and the
face video are passed through Wav2Lip. Wav2Lip modifies
the lip movements in the original video and preserves the
original head movements, background, and camera varia-
tions, thus allowing us to create realistic-looking synthetic
videos in the wild. Overall pipeline is illustrated in Fig. 3.

4. Human Lipreading Training

Lipreading is an involved process of recognizing speech
from visual cues - the shape formed by the lips, teeth, and
tongue. A lipreader may also rely on several other factors,

such as the context of the conversation, familiarity with
the speaker, vocabulary, and accent. Thus, taking inspi-
ration from lipreading.org and readourlips.ca8, we define
three lipreading protocols for conducting a user study to
evaluate the viability of our platform - (1) lipreading on
isolated words, (2) lipreading sentences with context, and
(3) lipreading missing words in sentences. These protocols
rely on a lipreader’s vocabulary and the role that semantic
context plays in a person’s ability to lipread.

4.1. Lipreading on isolated Words (WL)

The ability to disambiguate different words through vi-
sual lip movements helps shape auditory perception and
speech production. In word-level (WL) lipreading, the user
is presented with a video of an isolated word being spo-
ken by a talking head along with multiple choices and one
correct answer. When a video is played on the screen, the
user is required to respond by selecting a single answer from
the provided multiple choices. Visually similar words (ho-
mophenes) are placed as options in the multiple choices to
increase the difficulty of the task. The difficulty can be fur-
ther increased by testing for difficult words - difficulty asso-
ciated with the word to lipread, e.g., uncommon words are
harder to lipread. For the purpose of our study, we test the
users only on the commonly known words. The multiple
answer choices have been fixed to 5 options. An example
of word-level lipreading is shown in Fig. 5 (a).

4.2. Lipreading Sentences with Context (SL)

In sentence-level (SL) lipreading, the users are presented
with (1) videos of talking heads speaking entire sentences
and (2) the context of the sentences. The context acts as an
additional cue to the mouthing of sentences and is meant
to simulate real conversations in a given context. Accord-

8https://www.readourlips.ca/

https://www.readourlips.ca/
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ing to [3] the context of the sentences can improve a per-
son’s lipreading skills. Context narrows down the vocabu-
lary and also helps in the disambiguation of different words.
We evaluate our users on two contexts - A) Introduction -
‘how are you?’, ‘what is your name?’, and B) Lipreading
in a restaurant - ‘what would you like to order?’. Like WL
lipreading, we provide the user with a fixed number of mul-
tiple choices and one correct answer. Apart from context,
no other information is provided to the participants regard-
ing the length or semantics of the sentence. Fig. 5 (b) shows
an example of sentence-level lipreading with context.

4.3. Lipreading missing words in sentences (MWIS)

According to9, an expert lipreader can discern only 40%
of a given sentence or 4 − 5 words in a 12 words long
sentence. In this protocol, we try to emulate such an ex-
perience by masking words in the sentence (MWIS). The
participants watch videos of sentences being spoken by a
talking head with a word in the sentence masked as demon-
strated in Fig. 5 (c). Unlike lipreading sentences mentioned
in Sec. 4.2, the users are not provided with any additional
context of the sentence. Lip movements are an ambiguous
source of information due to the presence of homophenes,
thus, this exercise aims to use the context of the sentence to
disambiguate between multiple possibilities and guess the
correct answer. For instance, given the masked sentence
”a cat sits on the {masked}”, a lipreader can disambiguate
between homophenes ‘mat’, ‘bat’, and ‘pat’ using the sen-
tence context to select ‘mat’. The user is required to enter
the input in text format for the masked word as shown in
Fig. 5 (c). Minor spelling mistakes are accepted.

5. User Study

In this section, we explain the collective background of
our participants, the types of videos used for the study, and
the design of our testing platform.

5.1. Participants

We perform our study on 50 participants with varying
degrees of hearing loss with 32 male and 18 female partic-
ipants. The average age of the participants in this study is
35 years, ranging from 29 years to 50 years. Participants
in this study reside in the Indian states of Maharashtra and
Rajasthan. 29 participants have a Master’s degree while the
remaining 21 have a Bachelor’s degree. All the participants
in the study report having sensorineural hearing loss10 and
use hearing aids in their daily life along with lipreading and
oral deaf speech as their primary mode of communication.

9Speech Reading, Hearing Loss in Children | CDC
10What is Sensorineural Hearing Loss?

Real Synthetic
Task American American Indian
WL 80 800 800
SL 60 600 600
MWIS 70 700 700
Total 210 2100 2100

Table 1: No. of examples curated for each protocol in different
English accents (American / Indian).

5.2. Dataset

We scrape real videos from lipreading.org and generate
our synthetic videos on them. Lipreading.org videos allow
us to (i) make a direct comparison between the real lipread-
ing training videos and our synthetically generated videos
and (ii) lipreading.org provides the correct answer of the
video; this provides the correct ground truth label for the
real videos later used for quantitative analysis.

Primarily, we aim to compare a user’s performance on
the synthetic videos generated using our proposed pipeline
against the real videos on lipreading.org. We use the three
protocols explained in Sec. 4 for this purpose. Our synthetic
videos are divided into: (1) non-native American-accented
English (AE) videos and (2) native Indian-accented English
(IE) videos. Our users are of Indian origin.

We create our synthetic dataset using 10 driving videos
on 5 speakers. For WL lipreading protocol, we scrape 80 la-
bels from lipreading.org’s single-word lipreading quiz. Us-
ing these we generate 80 × 10 = 800 talking head videos
- 10 variations per word. For SL lipreading, we scrape 60
questions from lipreading.org’s sentence-level quiz across
two contexts: introductions and lipreading in a restaurant.
Using these sentences, we generate 60 × 10 = 600 talking
head videos - 10 variations for each sentence. Lastly, we
scrape 70 sentences from lipreading.org’s missing words in
sentences task and generate 70 × 10 = 700 talking head
videos for the MWIS protocol. We generate these videos
once using American-accented TTS and the second time us-
ing Indian-accented TTS. As shown in Table 1, we generate
a total of 4200 synthetic videos and collect 210 real videos
from lipreading.org across the protocols.

5.3. Test Design

Our primary goal is to validate that the synthetic talking
head videos generated using our pipeline can replace real
videos in terms of visual quality and ease to discern.

Each participant participates in all 3 protocols. For
each protocol, the user takes 3 quizzes corresponding three
datasets: (1) Real AE, (2) Synthetic AE (Synth AE), and (3)
Synthetic IE (Synth IE). In total, user attempts 9 quizzes.
Quizzes are delivered through a web-based platform that
we developed. Our users report taking the quizzes from a
plethora of personal devices like PCs, laptops, Android and

https://www.cdc.gov/ncbddd/hearingloss/parentsguide/building/speech-reading.html
https://www.healthline.com/health/sensorineural-hearing-loss
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Figure 6: Mean user performance on the three lipreading protocols. Error bars are the standard errors of the mean.

Figure 7: Box plots depicting the distribution of scores on the three lipreading protocols. Horizontal lines within the rectangles represent
median scores, and the top and bottoms of the rectangles correspond to the first and third quartiles; the horizontal lines at the ends of the
vertical “whiskers” represent the minimum and maximum scores, and the diamonds represent scores outside this range.

iPhone mobile devices, and tablets. The number of days
taken to complete a test is left at the user’s discretion to
prevent the user from feeling fatigued as lipreading is an
involved process and can be mentally taxing. The longest
time taken by any user to complete our test is four days.

For each quiz, the user is presented with 20 ques-
tions/videos. For each question, a word/sentences is first
randomly sampled from the database. One of the 10 varia-
tions of the sampled word/sentence present in the database
is then randomly chosen. The audio is removed from
the videos before displaying to the users. We ensure that
words/sentences are not repeated across the quizzes in a sin-
gle protocol to prevent bias by familiarization. We also en-
sure that the difficulty of lipreading across all the datasets
and protocols is kept consistent. For each correct attempt,
the user is rewarded 1 point and the score is computed out of
20. We expect the user to finish a single test in one sitting.
For a fair comparison, we do not inform the user if they are
being tested on real or synthetic data.

Quiz demo is provided in the supplementary video.

6. Results and Discussion
In this section, we conduct statistical analysis to verify

(T1) If the lipreading performance of the users remain com-

parable across the real and synthetic videos generated using
our pipeline. Through this, we will validate the viability of
our proposed pipeline as an alternative to the existing online
lipreading training platforms. (T2) If the users are more
comfortable in lipreading in their native accent/language
than lipreading in a foreign accent/language. This would
validate the need for bootstrapping lipreading training plat-
forms in multiple languages/accents across the globe.

Fig. 6 plots the standard errors of the mean. Fig. 7
presents the boxplot across the three lipreading protocols.

Synthetic videos as a replacement for real videos: To
validate (T1), the difference in the user scores across the
real and synthetic videos should be statistically insignifi-
cant. Since our conclusion depends on the evidence for a
null hypothesis (no difference between the categories), just
the absence of evidence is not enough to support the hy-
pothesis. Therefore, we perform a Bayesian Equivalence
Analysis using the Bayeisian Estimation Supersedes the t-
test (BEST) [17] to quantify the evidence in favour of our
model. BEST estimates the difference in means between
two distribution/groups and yields a probability distribution
over the difference. Using this method, we compute (1) the
mean credible value as the best guess of the actual differ-
ence between the two distributions and (2) the 95% Highest
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Density Interval (HDI) as the range where the actual differ-
ence is with 95% credibility. For the difference in the two
distributions to be statistically significant, the ideal differ-
ence in their mean scores should lie outside the 95% HDI.

We report the BEST statistics on Real AE and Synth AE
studies for all three lipreading protocols in Table 2. We
also report the t statistic and p-value using the standard two-
tailed t-test. From Table. 2, it is clear that the BEST statistic
lies within the acceptable 95% HDI for all the three proto-
cols indicating that the difference in the scores between the
two groups is statistically insignificant. This suggests that
our pipeline is a viable alternative to the existing manually
curated talking-head videos.

Native vs Non-native accented lipreading: To vali-
date (T2), the difference in the user scores between native
and non-native accented English should be statistically sig-
nificant. Since our participant pool is from India, we com-
pare the user scores on Synth IE and Synth AE. We perform
two-sample Z test since our sample size is large (> 30) to
validate the statistical significance. To this end, we propose
Null Hypothesis H0: the difference in the mean scores be-
tween Synth IE and Synth AE is statistically insignificant,
and consequently the Alternate Hypothesis H1: the differ-
ence in the mean scores between the Synth IE and Synth AE
is statistically significant. We compute the z statistics and
report the p-value for the 90% confidence interval (signifi-
cance value α=0.1) in Table 3 for the three protocols. We
observe that the Z test statistic lies outside the 90% critical
value accepted range for two tasks, WL and SL, indicating
that the difference in their mean values is statistically sig-
nificant in favor of IE and we reject H0 in favor of H1 for
these protocols. For MWIS protocol, the p-value is > 0.1
and the z statistic falls within the acceptable 90% confi-
dence interval, indicating that the difference in their mean
scores is not statistically significant. Thus, we fail to reject
H0 in this case. The overall results support our claim that
lipreading on native-accents makes much difference in the
performance of a lipreader and they are more comfortable
in lipreading native accents. Moreover, it reinforces the im-
portance of our platform.

The development of lipreading training database for each
new accent using real videos is a non-trivial, exhausting,
and time-consuming task. Our platform could thus be easily
adopted to add any new language/accent as long as a TTS
for that language/accent is available.

Discussion: We note that the lipreaders score relatively
higher for the SL protocol. The context of the sentence nar-
rows the vocabulary space and helps in the disambiguation
of homophenes. MWIS is the most challenging protocol
as it involves retrieving the correct word from the user’s
own memory as opposed to classifying the given multiple
choices. It also involves mapping the unmasked word from
the sentences to the videos and recognizing the mouthing

95% HDI Mean MGD t-value p-value

WL (-0.254, 1.63) 0.701 0.7059 1.676 0.1034

SL (-0.226, 1.62) 0.671 0.6471 1.540 0.1333

MWIS (-0.366, 1.98) 0.793, 0.8235 1.517 0.1390

Table 2: We perform BEST statistical analysis and compute the
95% HDI range of the difference in means of the real and synthetic
distributions. Mean is the distribution of means. We also report the
p-values and t-values from a standard t-test for comparison.

p-value accepted range z statistic
WL 0.0786 (-1.645 : 1.645) 1.758816
SL 0.0171 (-1.645 : 1.645) 2.384995
MWIS 0.705 (-1.645 : 1.645) 0.378506

Table 3: Two-sample z-test on synthetic Indian-accented English
and American-accented English videos. The significance level α
is kept at 0.1. The null-hypothesis is rejected if the z statistic falls
outside the 90% critical value accepted range. Consequently, the
p-value is also less than the significance value α in that case.

for missing word. Thus, they score relatively low on MWIS.
As a conclusion of the user study, we present evidence

that synthetic videos can potentially replace real videos. We
show that the drop in user performance across Real AE and
Synth AE is statistically insignificant across all the proto-
cols. We also show that users are more comfortable lipread-
ing in a native accent through paired z-test highlighting the
dire need to bootstrap lipreading platforms in multiple lan-
guages/accents at scale.

7. CONCLUSION
Lipreading is a widely adopted mode of communication

for people with hearing loss. Online resource for lipread-
ing training is however, scarce and limited in many factors
such as vocabulary, speakers, languages. Moreover, launch-
ing a new platform in a new language is costly that would
need months of manual efforts to record training videos
on hired actors. In this work, we analyze the viability of
using synthetically generated videos as a replacement for
the real videos for lipreading training. We propose an end-
to-end automated and cost-effective pipeline for generating
lipreading videos and carefully design a set of protocols to
evaluate the generated videos. We perform statistical anal-
ysis to validate that the difference in user performance on
real and synthetic lipreading videos is statistically insignif-
icant. We also show the advantage of lipreading in native
accents thus highlighting the dire need for lipreading train-
ing in many languages and accents. In this vein, we envi-
sion a MOOCs platform for training humans in lipreading
to potentially impact millions of people with some form of
hearing loss across the globe.
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